Расчет столбчатого фундамента каркасного дома
Исходные параметры для расчета столбчатого фундамента:
- тип грунта и перепад высот в месте будущего строительства;
- глубина залегания подземных вод;
- уровень промерзания грунта;
- проект дома (расположение несущих и внутренних стен).
Самым главным противопоказанием для выбора столбчатого фундамента является высокий уровень грунтовых вод. Нельзя допускать, чтобы он подходил ближе чем на 50 см к подошве столбов. Кроме того, столбы обязательно должны быть заложены глубже слоя плодородных неустойчивых органических грунтов.
После исследования грунтов необходимо определить нагрузку, которую дом с фундаментом будут оказывать на несущий грунт, проще говоря, расчёт веса дома. Оценивается примерная масса будущей постройки (точную считать бессмысленно, однако при подсчетах постарайтесь учесть и нагрузки из-за домашней утвари), после чего выбирается вид столбчатого фундамента. Если есть сомнения, то лучше взять более прочный вариант.
Приближенные значения удельного веса для отдельных элементов конструкции
После определения веса дома рассчитываем минимально необходимую суммарную площадь (S) оснований всех столбов фундамента:
S = 1,3×P/Rо ,
где 1,3 — коэффициент запаса надёжности;
Р — общий вес дома вместе с фундаментом, кг;
Rо — расчётное сопротивление несущего грунта, кг/см².
Значение Rо
Значение Rо, называемое ещё несущей способностью грунта, ориентировочно можно принять по таблице ниже:
Примечание:
Значения расчётных сопротивлений даны для грунтов расположенных на глубине около 1,5 метров. У поверхности несущая способность почти в полтора раза ниже.
Рассчитав значение суммарной площади оснований всех столбов, мы теперь можем определить их необходимое число в зависимости от диаметра или размеров сечения.
Расчет столбчатого мелкозаглубленного фундамента на опорных подошвах для моего каркасного дома
Итак, спроектированный мной каркасный дом с мансардой имеет размеры 8 на 8 м, высота потолков 1-го этажа 2.5 м, площадь крыши 108 м2, стены толщиной 200 мм с утеплением пенопластом или минватой (окончательное решение еще не принято).
Для расчета нагрузки возьму следующие параметры массы 1 м2 конструкций:
- цокольное перекрытие 75 кг;
- чердачное 75 кг;
- стены 70 кг;
- кровля 30 кг;
- снеговая нагрузка 190 кг;
- полезная нагрузка помещений (мебель и люди) 210 кг;
- фундамент 2500 кг/м3;
При расчете массы стен просуммировал площадь всех стен, включая внутренние перегородки, получив следующий результат: площадь стен первого этажа 121.5 м2, площадь внутренних стен мансарды 41.5 м2. Таким образом, масса всех стен дома равна (121.5 + 41.5)*70 = 11 410 кг.
Площадь перекрытий (цокольного и первого этажа): 8 * 8 = 64 м2. Масса перекрытий 64*2*75 = 9 600 кг.
Полезная нагрузка помещений: 64 * 210 = 13 440 кг.
Масса чердачного перекрытия (мансарда с утеплением): 108 * 200 = 21 600 кг.
Масса снеговой нагрузки (при самых худших условиях): 108 * 190 = 20 520 кг.
Общая масса дома равна примерно 77 тонн.
Масса фундамента (22 опоры): 4 м3 * 2500 = 10 000 кг.
Итого, масса дома с фундаментом составляет около 87 тонн.
Так как по проекту у меня запланирована установка 22 столбов-опор, теперь необходимо определить потребную площадь их основания (грунт: 50 см плодородный слой, далее – 10 см суглинка, ниже – песок с гравием, грунтовые воды расположены ниже 2 м).
Минимально необходимая суммарная площадь (S) оснований всех столбов фундамента:
S = 1,3×P/Rо ,
S = 1.3 * 87 000 (кг) / 3,5 = 32 314 см2
Теперь находим потребную площадь одной опоры: 32 314 / 22 = 1 468 см2, что соответствует квадрату со сторонами 38 см.
Если принять размер опоры 0.6 м х 0.6 м (площадь основания 3600 см2 или 0.36 м2), то суммарная площадь основания всех опор будет равна 7,92 м2, а нагрузка на грунт составит не более 1,3 * 87 000/79200 = 1,42 кг/см2, что обеспечивает необходимую несущую способность фундамента (ведь под подошвами опор у моего фундамента будет насыпной грунт с уплотнением, т.е. R должно быть не более 1,5 кг/см2).
Параметры арматуры для фундамента
Возможные ошибки и их последствия
Для опытного строителя вязка арматуры с предварительными расчетами материалов не представляет особой сложности. Ошибки допускают в основном частные застройщики, не имеющие навыков подобных работ.
Самые распространенные ошибки:
- неправильный расчет прочности продольной арматуры (приводит к быстрому разрушению бетонной конструкции);
- неправильная укладка арматуры по углам каркаса (фундамент не выдержит нагрузок на разрыв и постепенно растрескается);
- применение для вязки недостаточно прочной проволоки (соединения не выдержат нагрузки трения и распадутся);
- слабая затяжка проволочной петли (со временем соединения ослабнут, узлы получатся слишком подвижными, и бетон начнет разрушаться изнутри).
Основная сложность в обустройстве фундамента заключается в том, что после завершения строительства всего здания исправить ошибки будет невозможно.
Ошибки
К часто допускаемым ошибкам, которые совершает неопытный застройщик, возводя столбчатый фундамент под каркасный дом впервые, без опыта и навыков, своими руками, можно отнести:
- Столбы имеют разное заглубление;
- Неправильно выполнен весь расчёт по глубине закладки;
- Неравномерно распределена нагрузка на опоры.
Застройщики часто не учитывают эти факторы при спонтанном решении о возведении дополнительной мансарды или даже дополнительного этажа.
Часто причиной дефектов бывает приобретение некачественных материалов, когда определяющим выбор фактором является низкая цена. Это может быть песок с большими примесями глины или ила либо слежавшийся от длительного хранения цемент с утраченными показателями прочности. Самостоятельно приготовленная бетонная смесь была излишне жидкой или густой, что понизило прочность фундамента как минимум на четверть.
Материалы и технологии
При строительстве правильной конструкции в первую очередь необходимо продумать её конструктив и все необходимые силовые элементы (распоры, укосины, стяжки). Ведь одно дело: лить ленту высотой от земли в 30-40 см, и совсем другое – заливать стенки подвала высотой в 2.5 метра. Особенно, если бетон подаётся при помощи бетононасоса.
Я построил опалубку из 25-х досок. Стяжки не стал делать, думал, выдержит, т.к. каждые 30 см я ставил деревянные распорки. При заливке бетона опалубку распёрло, да так, что два раза пришлось вычерпывать вылившуюся смесь, потом снова скреплять опалубку и вручную закидывать бетон обратно. Наученный очень горьким опытом, я теперь обязательно буду стягивать стенки стяжками.
Нередки случаи, когда, не потрудившись на должном уровне произвести укрепление, мы обнаруживаем, что при заливке или вибрировании конструкцию опалубки просто разрывает. Весь бетон выливается на грунт. Конструкцию приходится в экстренном порядке латать, что приводит к большим денежным потерям. Отсюда правило: опалубку необходимо дополнительно закреплять.
Причины возникновения деформаций фундамента
Появление трещин в основании либо его деформация – это нередкое явление. Возникает оно при длительной эксплуатации сооружения без регулярного проведения профилактических ремонтных работ или из-за действия независящих от человека факторов. От фундамента разломы и сдвиги стен передаются строению. Если своевременно не остановить этот процесс, то постройка развалится.
Трещина в фундаменте
Разрушение фундаментной ленты происходит по следующим основным причинам:
- вибрации (подвижки) грунта, вызванные землетрясением либо проведением взрывных работ поблизости от строения;
- возрастание массы сооружения при его реконструкции (из-за применения более тяжелых материалов) или достраиванию этажей;
- применение для строительства опорной конструкции под здание низкокачественных материалов;
- расположение постройки на наклонном участке, в результате чего может случиться оползень или происходит медленное сползание грунта;
- рытье котлованов, траншей на близком расстоянии от сооружения;
- отклонение от строительных нормативов и технологии проведения работ при возведении постройки;
- изменение несущих свойств грунта под строением, вызванное подъемом подземных вод, его сильным промерзанием и прочими факторами;
- несоблюдение эксплуатационных правил, непроведение своевременных ремонтов;
- затопление территории вокруг постройки и отсутствие при этом системы водоотведения;
- неправильный расчет несущей способности основания;
- значительная усадка строения.
При некоторых причинах понадобится кроме восстановления фундаментной ленты, проводить дополнительные работы, направленные непосредственно на их устранение. Примером таких мероприятий служит создание дренажной системы, укрепление близлежащего грунта (даже склона), гидроизоляция основания. Без проведения таких работ разрушение фундамента будет продолжаться дальше и после ремонта.
Когда требуется усиление и что это?
Необходимость усиления фундамента возникает в разных ситуациях:
- Когда планируется строительство дополнительного этажа, пристройки, или иное изменение размера дома.
- При появлении на стенах или фундаментной ленте трещин.
- Если нарушена гидроизоляция ленты, вызвавшая осыпание бетона.
- Механические повреждения ленты.
- Подъем уровня грунтовых вод, разрушающих ленту.
- Агрессивное воздействие среды.
Все эти случаи требуют немедленного вмешательства. Усиление — это увеличение несущей способности ленточного основания путем установки добавочных элементов, увеличения сечения ленты, инъекций специальных веществ или иных мероприятий.
Выбор конкретного метода зависит от состояния ленты, причин возникновения проблемы и размеров необходимого вмешательства. В любом случае, перед началом работ необходимо тщательное обследование конструкции и принятие решения с участием опытных специалистов.
Типы фундаментов и способы их укрепления
Как известно, существуют фундаменты четырех основных типов:
- Плитный фундамент. Представляет сплошную плиту, на которую равномерно распределяется нагрузка от здания.
- Ленточный фундамент. Имеет форму ленты определенной толщины (до 60 см, как правило), которая проходит под всеми внешними и внутренними основными стенами здания.
- Столбчатый фундамент — система отдельных опор, расположенных на определенном расстоянии (от 1,5 до 6 м) друг от друга под всеми стенами здания и их пересечениями.
- Свайный фундамент — отдельные опоры, выполненные под зданием (свайное поле).
Также фундаменты классифицируются по материалу, из которого они изготовлены. Выделяют фундаменты, выполненные из кирпичной или бутовой кладки, готовых элементов либо монолитные из железобетона. Последние являются наиболее прочными и долговечными. О методах их усиления речь пойдет ниже.
В зависимости от формы фундаментов и материалов, из которых они выполнены, методы их усиления могут различаться.
В целом, работы по укреплению фундамента подразделяются на два основных типа:
- повышение несущей способности основания (толщи грунта под фундаментом);
- усиление и ремонт самого фундамента.
Монтаж каркаса
Далее поэтапно рассмотрим работы по армированию ленточного основания. Армирование гораздо удобнее производить до установки опалубки. В этом случае опалубка не будет вам мешать сваривать или вязать каркасную конструкцию из отдельных элементов.
Элементы каркаса представляют собой прямоугольные объёмные конструкции определённой длины, которые укладываются в траншею, выкопанную для заливки фундамента. Длиной данные каркасные элементы должны от одного угла будущего здания до другого. На углах они соединяются специальными Г-образными соединительными элементами в одну непрерывную каркасную конструкцию. Подробнее о монтаже каркаса смотрите в этом видео:
Подготовительные работы
Перед тем, как приступить к монтажу каркаса, следует произвести разметку территории площадки и в нужных местах по периметру будущих стен вырыть траншеи. На дне траншеи должна быть отсыпана подушка из гравия, крупного песка или щебня. Поверх этой подушки и будет монтироваться наша металлическая конструкция.
Изготовление каркаса
В опалубке каркас должен лежать, таким образом, чтобы его продольные, «рабочие» нити были полностью скрыты бетоном. Слой бетона поверх основной арматуры должен быть не менее 2 – 3 см. Стандартная ширина ленточных фундаментов составляет 40 – 50 см, соответственно наш каркас должен быть шириной около 35 – 40 см.
Приступая к изготовлению элементов каркасной конструкции, прежде всего, производим нужное число металлических заготовок. Режем рабочую арматуру на заготовки нужной длины в необходимом количестве (зависит от числа нитей).
Также нарезаем поперечные соединительные элементы из гладкого круглого проката меньшего диаметра, нежели рабочая рифлёная арматура. При этом следует учитывать ширину будущего фундамента – горизонтальные соединительные элементы по своей длине должны быть равны ширине фундамента.
Соблюдайте четкое расположение заготовок
Вертикальная соединительная арматура должна соответствовать высоте фундамента. В этом случае данные штыри, выступая за продольные нити, послужат ограничителем для опалубки, позволив соблюсти необходимую дистанцию между ней и рабочим армированием в 2 – 3 см.
После этого приступаем к сварке или вязке плоских заготовок будущего армирования.
Укладываем две нити рифлёного прутка параллельно друг другу и соединяем их друг с другом поперечными металлическими штырями при помощи сварочного аппарата или вязальной проволоки. При этом следует соблюдать чёткое расположение заготовок:
- шаг между поперечными соединительными элементами должен равняться 20 – 30 см;
- поперечные штыри должны выступать за края будущей конструкции на 2 – 3 см с каждой стороны.
В итоге получаем плоские конструкции, похожие на металлические приставные лестницы. Следующим шагом объединяем их в объёмные прямоугольные конструкции при помощи вертикальных соединительных штырей. Приваривая или привязывая проволокой «лестницы» через определённые расстояния к вертикальным штырям, получаем объёмные ажурные конструкции, которые и являются основными заготовками будущего армирования.
Сборка единого каркаса
Полученные объёмные элементы укладываются в траншеи поверх песчано-гравийной подушки. При этом каркас не должен лежать на ней – для качественного армирования, он должен быть поднят на 5 – 7 см. Для этих целей подкладываем под него в нескольких местах камни или кусочки кирпича.
Следующий шаг – стыковка всех этих отдельных элементов, расположенных на прямых участках траншеи. Это можно сделать, применив Г-образные хомуты, изготовленные из той же арматуры, что и горизонтальные нити. С их помощью соединяются попарно все смежные горизонтальные нити двух соседних каркасных элементов.
Это является завершающим этапом армирования железобетонного основания здания. После того, как все заготовки каркаса соединены на углах, можно приступать к установке опалубки и заливки бетона.
Фиксация в армировании и зависимость от нагрузок
Частные дома, дачи, хозяйственные постройки, мастерские и другие малоэтажные здания оказывают относительно небольшую нагрузку на основания. В слабо нагруженных фундаментах целесообразно использовать метод ручной или машинной вязки арматуры. Металлические прутья обвязывают специальной вязальной проволокой.
В фундаментах массивных многоэтажных зданий категорически недопустимо смещение арматурных стержней друг относительно друга. Поэтому вместо вязальной проволоки все элементы каркасов в фундаментах соединяют жесткими и неподвижными сварными соединениями. Такой метод позволяет добиться максимальной стабильности армирующей конструкции и значительно повысить ее прочность.
Изготовление армирующей конструкции
На практике при домашнем строительстве для усиления вертикальных бетонных опор чаще используется конструкция из четырех ребристых элементов, связанных между собой проволокой через 40-50 мм
Количество вертикальных ребристых прутков зависит от их собственного сечения и диаметра бетонного столба. В строительных нормах указано, что суммарный диаметр арматуры берется из расчета 0,1% от площади сечения опоры. Кроме того, необходимо выдерживать расстояние от крайних точек армирующей конструкции до наружного периметра опоры. Этот показатель в пределах 4-5 см. Согласно этим правилам подбирается количество и толщина арматуры для вертикального усиливающего каркаса.
На практике при домашнем строительстве для усиления вертикальных бетонных опор чаще используется конструкция из четырех ребристых элементов, связанных между собой проволокой через 40-50 мм. Нижние концы прутков должны быть в песчано-гравийной подсыпке, верхние, — выступать над краем столбов на 20-30 см. То есть, если высота столбов 2 м, то вертикальные элементы готовятся около 230 см.
Важно! При неоднородности рельефа грунта (значительные перепады высот в пределах строительной площадки), высота столбов может сильно отличаться. В такой ситуации длину вертикальной арматуры рассчитывают индивидуально для каждого столба
Выступающие ребристые прутья связываются с армирующей конструкцией бетонной мелкозаглубленной ленты, или поверхностно установленным деревянным ростверком. Еще одним вариантом усиления столбчатого фундамента является устройство железобетонной плиты перекрытия, опирающейся на столбы. В этом случае выступающие над опорами прутки перевязываются с арматурой, усиливающей плиту перекрытия.
Усиление опорных столбов фундамента армирующим каркасом, — необходимая процедура, на порядок усиливающая прочность основы под постройку и делающая опоры устойчивыми к различным повреждающим структуру бетона факторам.
Зачем выполняется армирование фундамента?
Зачем нужна эта процедура? Прежде всего, она придает фундаменту прочность и уберегает его от возможного растрескивания. Кроме того, армирование предотвращает деформации бетона. Дело в том, что бетон сам по себе не обладает таким качеством, как пластичность, поэтому и требует армирования. Армированная бетонная стяжка намного устойчивее, она способна выдерживать значительные растягивающие нагрузки на фундамент.
Что будет происходить с неармированной конструкцией? Силы пучения со стороны почвы (вследствие морозов) или нагрузки со стороны массивного здания будут ее немного деформировать. Как известно, вследствие деформации с одной стороны материала возникает зона сжатия, а с другой — создается зона растяжения. Как раз в зоне растяжения начнут образовываться трещины, которые в дальнейшем будут лишь увеличиваться. Предотвратить появлению этих трещин поможет процесс армирования.
Пример расчета армирования фундамента
Попробуем рассчитать, сколько потребуется материалов для обустройства армирования конкретного ленточного фундамента с чертежами. Допустим, мы строим из строительных блоков (шириной 0,4 м) небольшой загородный дом с габаритными (внешними) размерами 5×8 м. Характер почвы на нашем участке позволяет сделать высоту полосы 0,9 м, ее ширину 0,4 м, что соответствует ширине строительного материала стен. В арматурном каркасе для ленточного фундамента будем использовать продольные рабочие прутья диаметром 12 мм и □-образные поперечные хомуты, изготовленные из прутков диаметром 8 мм.
Армирование мелкозаглубленного ленточного фундамента:
На фото видно, что расстояние между рабочими продольными прутьями (0,4 м) и шаг □-образных поперечных хомутов (0,5 м) выбраны в соответствии с требованиями нормативных документов.
Проверяем относительное содержание продольных рабочих прутков в нашей железобетонной конструкции. Для этого воспользуемся следующими терминами и обозначениями:
- h – высота фундамента (900 мм);
- w – ширина фундамента (400 мм);
- Sₒ – площадь поперечного сечения фундамента;
- Sₐ – суммарная площадь поперечных сечений продольных прутьев (6 штук);
- r – радиус продольного прутка (6 мм), который равен d/2, где d – диаметр прутка (в нашем случае d=12 мм);
- D – относительное содержание рабочих прутков в «теле» фундамента.
Sₒ = h∙w = 900∙400 = 360000 мм²
Sₐ = 6∙π∙r² = 6∙3,14∙6² = 678,24 мм²
D = (Sₐ∙100)/ Sₒ = (678,24∙100)/360000 = 0,1884 ≈ 0,19 % (что в 1,9 раза превышает минимально допустимое значение, то есть схема армирования ленточного фундамента выбрана нами правильно).
Расчет количества продольных прутьев
Для того чтобы определить сколько стандартных продольных прутьев (6 м) нам необходимо, воспользуемся следующими величинами:
- L – длина фундамента (8000 мм);
- W – ширина фундамента (5000 мм);
- P – периметр;
- N – количество продольных элементов (в нашем случае 6 штук);
- X – общая протяженность продольных прутьев.
P = (L+ W)∙2 = (8000 + 5000)∙2 = 26000 мм = 26 м
X = P∙N = 26∙6 = 156 м
К полученной величине необходимо добавить 20 % (материал для изготовления Г-образных или П-образных элементов для правильного армирования углов и обеспечения достаточного нахлеста при стыковке элементов).
Xдоп = X∙0,2 = 156∙0,2 = 31,2 м
Окончательная общая длина продольного арматурного прутка:
Xок = X + Xдоп = 156 + 31,2 = 187,2 м
Стандартная длина арматурного прутка составляет 6 м. Осталось посчитать, сколько таких прутков необходимо: Xок/6 = 187,2/6 = 31,2 ≈ 32 штуки.
Изготовление поперечных элементов и расчет количества материала
Укладка арматуры в ленточный фундамент невозможна без установки поперечных (вертикальных) элементов. Обычно, для этих целей используют □-образные хомуты. Варианты хомутов:
Как видно из представленного фото все три варианта отличаются технологией изготовления, но расход прутка во всех случаях приблизительно одинаковый. Длина прутка (Ø=8 мм), необходимого для изготовления одного хомута: (800+300)∙2+250 = 2450 мм.
Вариант № 1
- Отмеряем приблизительно 120 мм и с помощью приспособления для гибки выгибаем эту часть будущего хомута в виде крючка.
- На расстоянии 800 мм от крюка загибаем пруток под углом 90˚.
- Отмеряем 300 мм и делаем еще один загиб на 90˚.
- От этого угла откладываем 800 мм и гнем прут на 90˚.
- От полученного угла отмеряем 300 мм и загибаем второй крючок.
Вариант № 2
- Отмеряем от конца заготовки 250 мм и с помощью приспособления выгибаем эту часть на 90˚.
- Откладываем от полученного 800 мм и загибаем пруток под углом 90˚.
- Отмеряем 300 мм и делаем еще один загиб на 90˚.
- От этого угла откладываем 800 мм и гнем прут на 90˚.
Внимание! Место нахлеста прутков скрепляем точечной сваркой или 2÷3 скрутками из проволоки. Вариант № 3
Вариант № 3
Вариант № 3
- Отрезаем от прутка две заготовки длиной по 860 мм каждая и две по 360 мм.
- Складываем из них прямоугольник (выступ с каждой стороны составляет 30 мм).
- Скрепляем углы хомута сваркой или проволочной скруткой.
Теперь рассчитаем, сколько хомутов необходимо для армирования нашего фундамента:
Q = P/T (P – периметр ленты фундамента, T – шаг расположения поперечных хомутов)
Q = 26/0,5 = 52 штуки
Плюс нам потребуются дополнительные хомуты для усиления каркаса в углах (по 2 штуки с каждой стороны всех четырех углов, то есть дополнительно 16 хомутов). На ленточный фундамент необходимо изготовить 68 □-образных поперечных хомутов.
Длина заготовки для одного элемента составляет 2450 мм, то есть из одного стандартного прутка мы сможем изготовить только 2 хомута. Требуемое число прутков (Ø=8 мм) – 34 штуки.
Схемы и чертежи укладки арматуры
Схема армирования дает полное представление о расположении элементов каркаса в пространстве. Когда толщина монолитной плиты меньше 15 см, то фундаменту достаточно жесткости, которую обеспечивает одна сетка из продольных и поперечных прутков, расположенных перпендикулярно друг к другу с проектным шагом.
Для легких блочных построек оптимальной высотой плиты считается 15–25 см, для жилых домов и коттеджей – 25–35 см. В этом случае арматурный каркас представляет собой соединенные между собой вертикальными прутками два пояса – верхний и нижний.
Основные параметры плиты
В простом варианте исполнения армирующий пояс представляет собой сетку, где арматура размещена по отношению друг к другу с одинаковым шагом, равным от 20 до 40 см. Расстояние между прутками, выбирается, исходя из расчетных нагрузок, действующих на фундамент.
Например, для кирпичных и других тяжелых домов выбирают шаг в 20 см, тогда как для одноэтажных каркасных коттеджей расстояние между силовыми элементами может быть увеличено до 30–40 см.
Шаг армирования должен быть меньше толщины фундаментной плиты минимум в 1,5 раза.
На практике чаще всего возникает потребность в армировании в два слоя. Тогда, согласно СП 63.13330.2018, верхний и нижний пояса соединяют между собой П-образными хомутами. Длина такого хомута должна превышать проектную толщину монолитной плиты минимум в два раза.
Концы арматуры должны быть утоплены в тело бетона минимум на 2–3 см со всех сторон. В противном случае металл быстро окисляется и возможно преждевременное разрушение силовой конструкции.
Зоны продавливания
В местах, где несущие стенки опираются на фундамент, возникает необходимость усиления армокаркаса. С этой целью уменьшают шаг армирования.
Например, если по основной площади прутки выкладывались через 20 см, то под стенами можно сократить это расстояние до 10 см. В противном случае остается риск деформации фундамента и появлений трещин.
С этой целью в армокаркасе основания оставляют вертикальные выпуски, которые послужат связующим звеном нескольких конструктивных элементов.
Дополнительное усиление арматурного каркаса
На практике часто возникают ситуации, когда требуется усиление арматурного каркаса в местах, где на фундамент действуют максимальные нагрузки, например, под колонами и действующими каминами внутри помещения.
В этом случае можно увеличить размер сечения прутков или ввести дополнительные продольные стержни в нижний пояс, поскольку именно на нижнюю часть силовой конструкции действует максимальное давление.